Contents lists available at ScienceDirect

Acta Ecologica Sinica

journal homepage: www.elsevier.com/locate/chnaes

Progress in the studies on the greenhouse gas emissions from reservoirs

Le Yang a,b,c, Fei Lu b,*, Xiaoping Zhou b,c,d, Xiaoke Wang b, Xiaonan Duan b,e, Binfeng Sun b,c

- ^a Zhejiang Forestry Academy, Hangzhou 310023, China
- b State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China
- ^d Qinghai Academy of Environmental Science, Xining 810007, China
- ^e Bureau of Science and Technology for Resource and Environment, Chinese Academy of Sciences, Beijing 100864, China

ARTICLE INFO

Article history: Received 14 April 2012 Revised 16 March 2013 Accepted 25 May 2013

Keywords: Carbon dioxide Methane Diffusion Bubble Turbine

ABSTRACT

The green credentials of hydroelectricity in terms of greenhouse-gas (GHG) emissions have been tarnished with the finding of the researches on GHG emissions from hydroelectric reservoirs in the last two decades. Substantial amounts of GHGs release from the tropical reservoirs, especially methane (CH₄) from Brazil's Amazonian areas. CH₄ contributes strongly to climate change because it has a global warming potential (GWP) 24 times higher than carbon dioxide (CO₂) on a per molecule basis over a 100-year time horizon. GHGs may emit from reservoirs through four different pathways to the atmosphere: (1) diffusive flux at the reservoir surface, (2) gas bubble flux in the shallow zones of a reservoir, (3) water degassing flux at the outlet of the powerhouse downstream of turbines and spillways, and (4) flux across the air—water interface in the rivers downstream of the dams. This paper reviewed the productions and emissions of CH₄, CO₂, and N₂O in reservoirs, and the environmental variables influencing CH₄ and CO₂ emissions were also summarized. Moreover, the paper combined with the progress of GHG emissions from Three Gorges Reservoir and proposed three crucial problems to be resolved on GHG emissions from reservoirs at present, which would be benefit to estimate the total GHG emissions from Three Gorges Reservoir accurately.

© 2014 Ecological Society of China. Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) are the three principal greenhouse gases (GHGs) in the atmosphere, and continuously increases in atmospheric concentrations of three GHGs are closely related to global climate change [1]. The studies on the GHG emissions from reservoirs in the last two decades indicated that hydroelectricity was not a green and clean energy as expected that no GHG is emitted from the reservoir surface [2-4]. In fact, reservoirs are also an important GHG source in the terrestrial ecosystems [5,6]. According to the natural belts that reservoirs located, the global reservoirs could be divided into tropical reservoirs (e.g., reservoirs in Brazil, French Guiana, and Laos) and temperate reservoirs (e.g., reservoirs in Canada, Switzerland, and China). The global warming potential (GWP) of the GHG emissions from Brazil's reservoirs are amazing, which are even higher than that from thermal power plants with similar installed capacity [2]. For example, Curuá-Una Reservoir in Brazil emitted 3.6 times more GHGs than those would have been emitted by generating the same amount of electricity from oil [7]. However, GHG emissions from Canadian reservoirs are relatively low [8], which are lower than the GHG emissions compared with GHGs emitted by fossil-fuelled electricity generation. Therefore, it cannot be generalized to determine whether the development of hydroelectricity could reduce GHG emissions, which should depend on the specific situation of reservoirs. The geographic locations of reservoirs have an impact on the organic matter storage and water temperature, and influence on CO2 and CH4 emissions subsequently [6]. However, CH₄ emission fluxes from Lake Wohlen, a temperate reservoir in Switzerland, are even higher than those from tropical reservoirs [9], which cause the controversy on the development of hydroelectricity in the middle Europe region [3]. Beside latitudes, CO₂ emissions from reservoirs are also influenced by reservoir ages [6], wind speeds [10], pH values [11], precipitation [12], chlorophyll-a concentrations [12,13], and dissolved organic carbon in the water body [12,14], while CH₄ emissions from reservoirs are influenced by water depths [15], water level fluctuations [16], DO concentrations [17], water velocities [16], and wind speeds [10].

GHG emissions from reservoirs are different from the natural water bodies, such as lakes and rivers, because the impoundment of the reservoir has resulted in flooding of large areas of terrestrial and natural aquatic ecosystems. CO₂ and CH₄ are the major end

^{*} Corresponding author. E-mail address: feilu@rcees.ac.cn (F. Lu).

products of the microbial decomposition of flooded organic matter [17], which are transported to the atmosphere from the reservoir surface by diffusion or bubbles. Turbines and spillways are unique to the dams, and turbines are used to generate electricity by transforming potential energy of the storage water into electric energy by the rotation of vane wheel; spillways are the drainage channels to control the floods in the reservoirs. When the deep water passes through the turbines and spillways, the dissolved gas (especially CH_4) in the hypolimnion before the dams would release into the atmosphere, becoming a huge CH₄ source, because of the abrupt change in temperature and pressure, which is called "degassing" [18]. Besides, downstream fluxes are often higher than upstream ones because of the strong disturbance to the water passing through the dams [19]; thus, the downstream emission fluxes should be paid attention. In conclusion, there are 4 pathways for GHG emissions from reservoirs, i.e., diffusive emission, ebullitive emission, degassing emission at turbines and spillways, and downstream emission [20].

The CO_2 emission from reservoirs is the largest, the second is CH_4 emission, and N_2O emission is the smallest. However, the GWP of the three gases is different. CH_4 has a GWP 24 times higher than carbon dioxide (CO_2) on a per molecule basis over a 100-year time horizon [3], and nitrous oxide (N_2O) has a GWP 298 times that of CO_2 [21]. Based on the studies on GHG emissions from reservoirs available, this paper reviewed the 3 GHG emissions from the tropical and temperate reservoirs through diffusion, ebullition, degassing, and downstream river. In addition, the environmental variables influencing GHG emissions were also summarized.

2. CO₂ emissions from reservoirs

2.1. CO₂ production in reservoirs

In a broad sense, CO₂ production in a reservoir includes the carbon footprint of emissions from the use of fossil fuel, steel, and cement during the construction phase of a dam [21], which is related to the size of dam and the duration of creation. The Three Gorges Dam (TGD) is a good example, with a length of 3035 m and a height of 185 m, which lasted for 18 years to construct (1992–2009). Although there is no study on CO₂ emission during the construction phase of the TGD, CO₂ emission during the process cannot be ignored. Besides, CO₂ production in a reservoir also includes the CO₂ emission when the dam operated normally, e.g., CO₂ emission from the fossil fuel combustion by shipping,

and CO₂ emission from the turbines. Navigation and electricity generation are two important functions of the Three Gorges Reservoir (TGR), but CO₂ emission has not been quantified during the two processes by far.

CO₂ discussed in the paper is produced from the decomposition of the flooded organic matter under the aerobic or anaerobic conditions after the impoundment. Carbon sources in the reservoirs included the flooded organic matter in the original forests, soils, vegetations, allochthonous input from terrestrial ecosystems or the upstream rivers nearby, and photosynthetic fixation by phytoplankton at the reservoir's surface or vegetations in the drawdown areas [21–23]. The flooded organic matter would decompose into CO₂ and CH₄ by methanogens under the anaerobic conditions at the reservoir bottom [23,24]. In fact, CO₂ could also be produced at the aerobic conditions, e.g., the decomposition of dead trees left above the water surfaces [24].

2.2. CO₂ transport in reservoirs

CO₂ emission fluxes in the reservoirs mainly include the two ways, i.e., diffusion and ebullition [24]. Diffusion is the dominate way for CO₂ emission from reservoirs [25], while bubbles have little contribution to CO₂ emission from reservoir's surface, because the solubility of CO₂ is large, i.e., 1 L water could dissolve 1 L CO₂ at the conditions of 1 atm and 25 °C; thus, CO2 is easily absorbed by water during the transport from the reservoir's bottom. For example, bubbles contributed less than 1% of CO2 emission from diffusion during the first years after the impoundment for Petit Saut Reservoir, French Guiana [23]; the CO₂ diffusive emission from Brazil's Balbina Reservoir is 2450 Gg C a⁻¹, while the CO₂ ebullitive emission is only about 0.02 Gg C a⁻¹ [26]. According to Table 1, bubbles are not the important way to transport CO₂ in tropical reservoirs, and only the CO2 diffusive fluxes are studied in temperate reservoirs (Table 2), probably because the frequency of bubbles and CO2 concentrations in bubbles are low and even could be ignored in temperate reservoirs.

2.3. Influences of turbines and spillways on CO₂ emission

The intakes of turbines and spillways often locate in the dozens of meters depth below the water surface, where have remarkable higher pressure than the atmospheric pressure. The dissolved ${\rm CO_2}$ in the hypolimnion would be released into the atmosphere when the water passes through the turbines and spillways because

Table 1					
CH ₄ and CO ₂	emissions	from	the	tropical	reservoirs.

Location Reservoir name	Reservoir name	Age (a)	Diffusive flux (mg m $^{-2}$ d $^{-1}$)		Bubbling flux (mg m ⁻² d ⁻¹)		Degassing (Tg C y ⁻¹)		Downstream river (mg m ⁻² d ⁻¹)		Reference
		CO ₂	CH ₄	CO ₂	CH ₄	CO ₂	CH ₄	CO ₂	CH ₄		
French Guiana	Petit Saut	1-10	-440 to 16280	10-3200	Ignore	11.2-800	5-30	5-40	41,800	1440	[23]
Panama	Gatun Lake	84		10.7		526.3					[27]
Brazil	Miranda		4389	130.35	0.25	23.85					[28]
	Três Marias		1117	31.85	3.76	164.5					[28]
	Barra Bonita		3986	16.95	0.13	3.95					[28]
	Segredo		2695	7	0.07	1.8					[28]
	Xingó		6138	29.3	0.05	10.75					[28]
	Samuel	4-5	7448	87.55	0.5	16. 5	0.052-0.076	65,700	192		[19,24,28]
	Tucuruí	8-9	8475	101.55	0.1 to 0.2	7.85	1.67				[25,28,29]
	Itaipu	8	171	10.15		0.55	0.31				[28,29]
	Serra da Mesa		2645	24.6	1.7	88.65	0.21				[28,29]
	Balbina	18	13,845	193	0	13	0.081	0.065	18,000	28.4	[26,30]
	Curuá-Una	13		36		77	0.022				[7]
Laos	Nam Ngum	28	-38.9 to -5.0	0.07 - 0.4			0				[31]
	Nam Leuk	10	-19.4 to 70.0	0.5 - 7.9			7×10^{-5}				[31]
	Nam Theun 2	1	22.1	19.2		40					[32]

Table 2 CH₄ and CO₂ emissions from the temperate reservoirs.

Location	Reservoir name	Age (a)	Diffusive flux (mg m $^{-2}$ d $^{-1}$)		Bubbling flux (mg $m^{-2} d^{-1}$)	References
			CO ₂ CH ₄		CH ₄	
Québec, Canada	Laforge-1	1-2	2300	8	57	[37]
	La Grande-2	28	661	0.14		[8]
	Eastmain-1	3	2426	0.77		[8]
	Rivière-des-Prairies	77	665	0.49		[8]
	Robertson	5-7	1131			[41]
	Sainte-Marguerite	2-4	4399			[41]
	Old Québec reservoirs	>10	1500-1600	8.8		[38,41]
Manitoba, Canada	Grand Rapids		624	0.58		[8]
	Jenpeg		316	1.11		[8]
	Kettle		514	-0.01		[8]
	MaArthur		367	0.04		[8]
	6 old reservoirs	>10	3350			[41]
Southeast Poland	Solina	41	-914-648	0		[42]
	Rzeszów	36	2042-7150	736-3850		[42]
	Wilcza Wola	21	3893-4161	32-451		[42]
Finland	Lokka	27	1070	22.9		[43]
	Porttipahta	25	1754	3.5		[43]
Switzerland	Lake Wohlen	90	962	15	480	[9,44]
	Lake Gruyere	59	979	0.15		[44]
	Lake Lungern	86	242	0.13		[44]
	Lake Sihl	70	1100	0.21		[44]
	Lake Luzzone	43	1414	0.13		[44]
West America	F.D. Roosevelt	59	-462	3.2		[11]
	Dworshak	28	-1195	4.4		[11]
	Wallula	47	-349	9		[11]
	Shasta	57	1247	9.5		[11]
	Oroville	33	1026	4.2		[11]
	New Melones	22	-1186	7.1		[11]
	46 reservoirs in Utah, Arizona, New Mexico	>10	664			[39]
China	Three Gorges Reservoir	7	3919	6.2		[4,34]
	Xiangxi River	7	1836	5.88		[13]
	Pengxi River	7	3542	23.5		[45]
	Shuibuya	4	3740	1.2		[46]
	Ertan	10		2.8		[15]
	Hongfeng	49	240			[47]
	Baihua	47	384			[47]
	Hongyan	36	368			[47]
	Xiuwen	47	752			[47]

of the abrupt decrease in pressure and the increase in water temperature [18]. Compared with the CO₂ diffusive emission from the reservoir surface, the CO2 degassing fluxes at the turbines and spillways have relatively small contribution to the total CO₂ emission of a reservoir. Based on the literatures available [23,26,31,33]. CO₂ degassing at the turbines and spillways contribute 0-16% to the total emission. Specifically, CO₂ degassing emissions from the turbines and spillways of Petit Saut Dam account for 7-16% of the total CO₂ emissions during 1994 to 2003 [23], which is called "degassing proportion" hereafter. The degassing proportion for CO₂ emission is about 1.67% at the Balbina Dam [26], 0.4–5% at the La Grande-2 Dam, Canada, and 0.1-7% at the La Grande-2 Dam [33], but the CO₂ degassing proportion is close to 0 at the Nam Ngum Dam and Nam Leuk Dam, Laos (Table 1) [31]. Up to now, no measurement has conducted on the degassing emission in China because of the limitations in the measurement technique and the military supervision for Chinese dams. However, the part of degassing emission is crucial to the total GHG emissions from reservoirs, especially for CH₄ degassing fluxes.

$2.4.\ CO_{2.}$ emission from the downstream rivers

Based on all the studies available [19,23,26], CO_2 emission from the downstream rivers contributed to 1.63–32% of the total CO_2 emissions from the reservoirs. Specifically, CO_2 emissions from

the Uatumã River, the downstream of the Balbina Dam, account for 1.63-7% of the total CO_2 emissions from the Balbina hydroelectric system [19,26]; CO_2 emissions from the Sinnamary River, the downstream of the Petit Saut Dam, contribute to 22-31% of the total CO_2 emissions from the Petit Saut hydroelectric system [19,23]; CO_2 emissions from the Jamari River, the downstream of the Samuel Dam, account for 32% of the total CO_2 emissions from the Samuel hydroelectric system [19]. CO_2 and CH_4 emissions at Sandouping, a downstream site of the TGD, are significantly higher than these emissions at Zigui, a site just upstream the TGD. The difference in the CO_2 and CH_4 emissions between the two sides of the TGD are probably related with the strong disturbance by the water passing through the turbines and spillways and the faster water velocity in the downstream rivers [34].

2.5. Environmental factors and their effects on CO₂ emission from reservoirs

2.5.1. Organic matter and temperature

 CO_2 and CH_4 emissions from the reservoir's surface are related with the amount of easily decomposable organic matter that is flooded after the filling of the reservoirs [35]. A large amount of organic carbon is stored in peatlands and forests; thus CO_2 and CH_4 emission fluxes are very high when such two land use types are flooded, such as Eastmain-1 Reservoir [36], La Grande 2

Reservoir [37], Laforge-1 Reservoir in Canada [37], and Brazil's Balbina Reservoir [26]. CO₂ and CH₄ emissions from reservoirs are very low if barren soils are flooded in the canyons, such as Ertan Reservoir [15], TGR [34]. Therefore, intensity clearing activities are often carried out before the impoundment of hydroelectric reservoirs in China, which could prevent the water quality after the water storage, and reduce GHG emissions as well.

Fluctuation in the water temperature has an impact on the CO_2 solubility [22], primary production [12], and the decomposition in organic carbon. [12]. Elevation in the water temperature promotes CO_2 emissions by increasing the decomposition rate of organic carbon, which could be seen in the positive correlations between CO_2 emissions and water temperatures in Canadian reservoirs [38,39]. However, if there are algae distributed in the water surface, the elevation in the water temperature would promote CO_2 absorption because of the increase the primary production of aquatic plants [12].

2.5.2. Latitude and reservoir age

CO₂ emission fluxes are exponentially negative correlated with the latitudes of the geographic location of hydroelectric reservoirs [6]. Most of CO₂ emission fluxes in the tropical reservoirs are higher than those in the temperate reservoirs (Tables 1 and 2), because a large amount of organic carbon is stored in the tropical flooded areas, and the high water temperature is beneficial for the decomposition of organic matter [35].

CO₂ emission fluxes decrease with the increase of reservoir ages because of the gradual decrease in the storage of organic carbon in the reservoirs [35]. GHG emissions are mainly released at the initial periods after the impoundment due to the abrupt release of the nutrient substances in the flooded lands, the elevation of microbe activities, and the decomposition of unstable carbon matters, such as soils, litters, swigs, and leaves [39]. However, CO₂ emission fluxes gradually decrease in the reservoirs with the decrease of organic matter and the increase of CO₂ absorption through photosynthesis by various aquatic plants. Specifically, CO₂ emission fluxes reached up to 8000 mg CO₂ m⁻² d⁻¹ at the surface of Eastmain-1 Reservoir in 2006, the first year after impoundment [40], while decreased to 2426 mg CO_2 m⁻² d⁻¹ in 2009 (Table 2) [8]; the average CO_2 emissions from Petit Saut Reservoir were about 200×10^3 t a⁻¹ in the first 3 years after impoundment (1994-1996), but decreased until less than 70×10^{3} t a⁻¹ after 2000 [23].

2.5.3. pH value

 ${\rm CO_2}$ emissions or ${\rm CO_2}$ partial pressure are significantly negative related with pH values in the reservoir's surface, as were seen in the five reservoirs in Wujiang River in China [48], the reservoirs in the western United States [11], and the reservoirs in eastern Canada [38]. The pH critical values are often reported to be 7.9–8.5 between ${\rm CO_2}$ absorption and emission [11,38,39]. PH level influences the ${\rm CO_2}$ concentrations in the water by favoring the formation of bicarbonate at the alkaline conditions, which leads to an undersaturation of dissolved ${\rm CO_2}$, promoting the absorption of atmospheric ${\rm CO_2}$ [38].

2.5.4. Vegetation

Whether there are vegetations distributed in the reservoir's surface determines that the reservoir is CO_2 source or CO_2 sink. When aquatic plants are distributed in the reservoir's surface, such as alga, CO_2 would be absorbed from the air and water nearby by photosynthesis. For example, CO_2 sink during the low water level periods is related with algal blooms in Xiangxi River and Pengxi River in summer [13,45]. If there is no vegetation distributed in the water surface, it would be possibly CO_2 source to the atmosphere, because the CO_2 partial pressure in the water is higher than that in the atmosphere.

2.5.5. Wind speed

The gas transfer velocity is influenced by wind speeds at the air–water interface [49]. It is considered that the strong wind (larger than 3 m s⁻¹) would promote the dissolved gases to release from the water surface, and the thin boundary layer model is appropriate to measure the gas fluxes under the conditions of strong winds [50,51]. When wind speed is less than 2–3 m s⁻¹, the gas transfer coefficient (k), an important parameter in the boundary layer model, is independent on wind speed [50], thus the error would be large if the empirical model is used to calculate CO_2 flux. Floating chambers are good estimates of CO_2 diffusive fluxes under the conditions of low wind speeds ranging from 0 to 3 m s⁻¹, because gas fluxes are not easily influenced by the walls of chambers at such conditions [11].

2.6. Summary

 $\rm CO_2$ diffusive emissions are predominant in the upstream before a dam. $\rm CO_2$ degassing emission from the turbines and spillways accounts for 0–16% of the total $\rm CO_2$ emission from a hydroelectric system, and the downstream emission accounts for 1.63–32% of the total. To estimate the total $\rm CO_2$ emission from a reservoir accurately, it needs to measure upstream $\rm CO_2$ emission, degassing emission from turbines and spillways, and the downstream river. In addition, $\rm CO_2$ emissions from reservoirs are influenced by the flooded organic carbon, water temperature, geographic location of reservoirs, reservoir age, pH value, vegetation, and wind speed.

3. CH₄ emission from reservoirs

3.1. CH₄ production in reservoirs

Damming for hydroelectric production involves the flooding of vegetations and soils containing significant amounts of organic matter. CH₄, N₂, and a small amount of CO₂ are released from the decomposition of various complicated organic matter under anaerobic conditions, while only CO₂ and N₂ are released under aerobic conditions [28]. Organic carbon is decomposed into CH₄ undergoing microbial fermentation, which could be divided into two steps as follows. Firstly, carbohydrate, fatty acid, and protein in the sediments of the flooded lands are decomposed into the simple organic acid (i.e., farmate, acetate), small molecular alcohols (i.e., methanol, ethanol, isopropanol), methylamine, and dimethyl sulfide by hydrolyzation and fermentation, and these simple organic matter could be decomposed further by methanogenesis [52]. Secondly, CH₄ and CO₂ would be released from the decomposition of these substances by methanogens under the anaerobic conditions, and the following reaction equation reflects the decomposition process from acetic acid to $CH_4:CH_3COOH \rightarrow CH_4 + CO_2$. The two processes happened synchronously [25,53].

3.2. CH₄ transport in reservoirs

Ebullition is a dominant way for CH₄ emission, while molecular diffusion is a secondary way for CH₄ emission from tropical reservoirs (Table 1). Bubble emissions are independent on reservoir ages. For examples, CH₄ emission by bubbles is about 1–3 times as high as that by diffusion in Petit Saut Reservoir in the first 6 years (1994–1999) after filling [23]; CH₄ emission by ebullition is 3 times higher than that by diffusion in Curuá-Una Reservoir (20–21 years old) in the wet season [7]; 98% of CH₄ is released by bubbles in Gatun Lake, Panama, which is an old reservoir with 84 years old [27]. However, molecular diffusion is a dominant way for CH₄ emission from temperate reservoirs (Table 2), but sometimes bubbles also have remarkable contribution to the total CH₄ emissions from some temperate reservoirs, and Lake Wholen in Switzerland, an old

reservoir with ages of 90 years, is a representative example. CH₄ ebullitive fluxes are up to 480 mg CH₄ m⁻² d⁻¹, and CH₄ diffusive fluxes are only about 15 mg CH₄ m⁻² d⁻¹ from Lake Wholen, which is by far the highest CH₄ emission rate ever documented for a midlatitude reservoir, even higher than that in tropical reservoirs (Tables 1 and 2) [9]. Inundated forests provide a large supply of nutrients for microbes in the Lake Wholen. Thus, the water in Lake Wohlen sometimes looks like champagne in the summer, with masses of gas bubbles rising to the surface [54]. In addition, recently studied indicated that the high sedimentation rate supplies reactive organic matter to deep, anoxic sediment strata at a very high burial rate (1100 g C m⁻² a⁻¹), which would fuel methanogenesis and ebullition of CH₄ at a warm water temperature (17 °C) [55].

3.3. Influences of turbines and spillways on CH₄ emission

The DO concentrations decrease with the water depths, while the dissolved CH₄ concentrations increase with the water depths in a reservoir [17,19,23,56]. The dissolved CH₄ concentrations reach 7.5 mg L⁻¹ at a depth of 30 m in Brazil's Tucuruí Reservoir [18]. When the water in the hypolimnion emerges from the turbines and spillways, the pressure instantly drops to a level of 1 atm, and the water temperature increases near to the temperature in the epilimnion; thus the great majority of the dissolved gas is released into the atmosphere of the downstream river because the solubility of CH₄ is only 0.035 mg L⁻¹ at the normal pressure and temperature (1 atm, 25 °C) [18]. CH₄ degassing emissions from the turbines and spillways are the dominant part of the total CH₄ emissions from a hydroelectric system. For examples, 64.9% and 34.5% of the total CH₄ emissions release from the turbines and spillways of the Tucuruí Dam, respectively, while CH₄ emissions from the reservoir's surface, including bubbles and diffusion, only account for 0.6% of the total CH₄ emissions [29]; CH₄ degassing emissions from the turbines contribute to 42.4-46.6% of the total CH₄ emissions from the Balbina Reservoir [30,57]; CH₄ degassing emissions from the turbines and spillways exceed 50% of the total CH₄ emissions from the Petit Saut Reservoir during the first 10 years after impoundment except for 1994, because CH₄ ebullitive emissions account for a large proportion of the total CH₄ emission in 1994, the first year after filling of the Petit Saut Reservoir [23]. In Brazil's other reservoirs, CH₄ degassing emissions from the turbines and spillways exceed the half of the total CH₄ emissions. For examples, 95% of the total CH₄ emission occurs at the turbines and spillways of the Curuá-Una Dam [7], 99% of the total CH₄ emission is degassing at the turbines and spillways of the Itaipu Dam [29], and 80.8% of the total CH₄ emission originates from the degassing emission from the turbines and spillways of at the Serra da Mesa Dam [29]. The turbine intakes of TGD are located at 80 m depth, and the pressure is about 8 atm there, but there is no report on the degassing emission from the turbines and spillways of the TGD by far.

3.4. CH_{4.} emission from the downstream river

Downstream CH_4 emission cannot be ignored in a hydroelectric system, because CH_4 diffusive flux is higher in the downstream river than the upstream. For example, the average CH_4 emission flux is (60 ± 38) mmol m⁻² d⁻¹ at the downstream rivers of Petit Saut, Balbina, and Samuel dams, which is significantly higher than the average upstream CH_4 emission flux $((3 \pm 2) \text{ mmol m}^{-2} \text{ d}^{-1})$. However, rivers downstream of dams account for 9–33% of the total CH_4 emissions across the reservoir surfaces because of the relatively small areas of downstream rivers [19].

3.5. Environmental variables and their effects on CH₄ emissions from reservoirs

3.5.1. Temperature

 ${\rm CH_4}$ is the end product of the anaerobic decomposition of organic matter by multiple microbes, and ${\rm CH_4}$ emissions from the reservoirs are influenced by temperatures [38]. Elevation of temperature can increase the activities of microbes. Methanogenic bacteria are much more responsive to temperature than methanotrophic bacteria [52], and the optimum temperatures for ${\rm CH_4}$ production and oxidation is about 25 °C [58]. Therefore, when the temperature fluctuated at the range that two kinds of bacteria could bear, more ${\rm CH_4}$ would be produced when temperature rises, and ${\rm CH_4}$ production rate would decrease remarkable when temperature falls [58]. Therefore, ${\rm CH_4}$ emissions are often reported to be linear or exponential relationships with soil temperatures or water temperatures [9,59–61].

3.5.2. Water depth

Most of CH₄ would be oxidized by methanotrophic bacteria when the water passes through the O_2 rich epilimnion waters by bubbles or molecular diffusion from reservoir sediments, and only a small amount of CH₄ could release into the atmosphere ultimately. CH₄ is more easily emitted from the shallow-water areas compared with the deep-water areas, because less CH₄ would be oxidized through a short distance between the surface and the reservoir bottom [60]. Although the occurrence of bubbles is episodic [6], bubbles often occur in the areas with a depth less than 10 m [17,23,27,37]. The shallower the water is, the more CH₄ ebullitive flux emits. For examples, CH₄ ebullitive fluxes are only $10-200 \text{ mg CH}_4 \text{ m}^{-2} \text{ d}^{-1}$ in the areas deeper than 7 m in Gatun Lake, Panama, while the values reach 300-2000 mg CH₄ m⁻² d⁻¹ in the areas less than 2 m [27]; the average CH₄ ebullitive flux was (164 ± 50) mg CH₄ m⁻² d⁻¹ in the areas with depths of 0–3 m, while the CH₄ bubble flux was 0 in the areas deeper than 8 m in Petit Saut Reservoir in 1997 [56]. Moreover, the CH₄ diffusive fluxes are also influenced by water depths. For examples, the CH₄ diffusive emissions from the water surface at the 1 m and 5 m depths are higher than those at the 10 m and 50 m depths in Ertan Reservoir [15]; the CH₄ diffusive fluxes in the areas less than 3.5 m are significantly higher than those in the areas deeper than 7 m in the La Grande-2 Reservoir and Laforge-1 Reservoir, Canada [37].

3.5.3. Water level fluctuation

Water level fluctuation in a reservoir changes the water depths of the permanently flooded lands, which influences on CH₄ emissions from the reservoir's surface subsequently. The drawdown areas are caused by the fluctuation in water levels in the edge of a reservoir [62], and the vegetations in the drawdown area are served as "methane factory" [21]. The vegetations grow and absorb CO₂ from the atmosphere by photosynthesis when the drawdown areas are exposed each year, but the new fixed carbon would be decomposed into CH₄ under the anaerobic conditions in the bottom of reservoirs when the drawdown areas are inundated again [63]. The vegetations in the drawdown areas can continuously remove carbon from the atmosphere as CO₂ and return it as CH₄, with a much greater impact on global warming [63]. Such processes are repeated every year, but there is still lack of quantitative study in aboard. However, there are several studies available on CH₄ emission from the TGR drawdown areas [16,64,65]. After impoundment of the TGR, there is large drawdown areas distributed in the two sides of the TGR, with 30 m in height and 450 km² in area [34], which is seldom seen in the world. The difference is obvious in CH₄ emissions between drylands and wetlands during the drainage of the TGR drawdown areas. CH₄ emission fluxes in the natural wetland

(e.g., *Scirpus triqueter*) and man-made wetland (e.g., rice paddies) reach up to $14.9 \text{ mg CH}_4 \text{ m}^{-2} \text{ h}^{-1}$ [64] and $3.94 \text{ mg CH}_4 \text{ m}^{-2} \text{ -} \text{ h}^{-1}$ [16], respectively, while CH₄ emissions from the different types of drylands (i.e., fallow land, deforested land, cropland) are close to 0 during the drainage periods [16]. However, CH₄ emission fluxes are low both in the drylands and wetlands during the inundated periods $(0.1-0.3 \text{ mg CH}_4 \text{ m}^{-2} \text{ h}^{-1})$ [16].

3.5.4. Dissolved oxygen in the water

CH₄ emission fluxes at the air–water interface are positively related with the dissolved CH₄ concentrations in the surface layer [56], while the dissolved CH₄ concentrations are influenced by DO in the water. Thus, the DO concentrations in the surface layer have an effect on CH₄ emission from the water surface. The DO concentrations decrease with the water depths, which decreases the possibility of CH₄ oxidation in the hypolimnion. Besides, another reason why the CH₄ concentration is high in the hypolimnion is that the deep waters are closed to the sediments, the CH₄ source of production [66,67].

3.5.5. Other environmental variables

CH₄ emissions are also influenced by wind speed [49,68], water velocity [69,70], and air–water temperature difference [71,72], which causes the instability of the air–water interface. Such 3 variables have an effect on CH₄ emission by changing the gas transfer coefficient (*k*) at the air–water interface [10,49,69]. Besides, CH₄ emissions from the reservoirs are also influenced by the flooded organic carbon [35], the carbon input from the upstream rivers [23,73], the primary production of aquatic plants [23], the retention time of water [73], weather conditions (light, rainfall) [74], and water quality [43,74].

3.6. Summary

Ebullitive emissions are the dominant way for CH₄ emission from the surface of tropical reservoirs, while diffusive emissions are the main way for CH₄ emission at the air–water interface in the temperature reservoirs. Moreover, CH₄ degassing emissions from the turbines and spillways account for the major proportion of the total CH₄ emission from a reservoir. Furthermore, CH₄ fluxes are high in the downstream river, which cannot be ignored when estimate the total CH₄ emission from a reservoir. In addition, CH₄ emissions from reservoirs are influenced by temperature, water depth, water level, DO, organic carbon, and so on.

4. N₂O emission from reservoirs

4.1. N₂O production in reservoirs

 N_2O could be released both in the aerobic or anaerobic conditions, but the substrates and bacteria are different between the two conditions. NO_3^- could reduce into NO_2 and N_2 via microbial denitrification under anaerobic conditions [76], while NH_4^+ could oxidize into N_2O and N_2 by nitrifying bacteria under aerobic conditions [77]. N_2O , as the intermediate byproduct of two microbiological processes, could be produced in oxic epilimnion, in anoxic hypolimnion, at oxic-anoxic boundaries, either at the sedimentwater interface [78].

4.2. N₂O emission flux in reservoirs

Diffusion flux is the main way for N_2O emission from the reservoir surface, while bubbles have little contribution to N_2O emission because of the high solubility of N_2O . For example, only about 0– $0.7 \,\mu g \,m^{-2} \,d^{-1}$ of N_2O is emitted by bubbles in Lokka Reservoir of Finland, which could be ignored [43]. Moreover, upstream N_2O

emission flux at the reservoir surface is higher than that in the downstream rivers. For example, normalized N_2O fluxes are 3–4 times higher at the upstream of Petit Saut Dam than those in its downstream river [79].

The impoundment of reservoirs may have little effect of adding additional N_2O emission, while may even decrease N_2O emission, because N_2O emission from lakes is significantly lower than that from croplands [78]. The original soils before filling, especially croplands, are an important N_2O source [76], but N_2O emission fluxes decrease even become a weak N_2O sink when the soils are flooded after impoundment [77]. However, it is not uniform for N_2O sink or source at various land use types before impoundment. Therefore, only if N_2O emission fluxes were measured at different land uses before and after impoundment in details, the net N_2O emission could be calculated accurately.

4.3. Influences of turbines and spillways on N₂O emission

The distribution of dissolved N_2O concentrations at the vertical profiles is different from that of dissolved CH_4 concentration. The dissolved N_2O concentrations increase with the decrease in DO, but the dissolved N_2O concentrations are undersaturated in completely anaerobic layers, which is consumed due to microbial denitrification in the reservoir sediments [78]. However, there is no report on N_2O degassing emission when the water passes through turbines and spillways.

4.4. Summary

There are a few studies available on N_2O emissions from temperature and tropical reservoirs (Table 3), but it is difficult to find a literature could include the N_2O ebullitive flux, the N_2O diffusive flux, the N_2O degassing flux at the turbines and spillways, and the N_2O emission flux in the downstream river. Compared with N_2O emissions from croplands, N_2O emissions from reservoirs are limited and unimportant. N_2O emissions from the agricultural soils are an important anthropogenic source, which cause the increase in N_2O concentration in the atmosphere [80].

5. Outlook

Several studies on GHG emissions from reservoirs are undertaken by Chinese scholars. Among these studies, GHG emissions from the TGR have drawn many attentions, and experts and scholars were organized to discuss several times in the past 5 years. The TGR is a typical valley-type reservoir, and the surface area of the TGR is up to 1084 km², with 660 km in length and 1–2 km in width when the water level reached 175 m. Spatial variations in GHG emissions from the TGR are significant due to the heterogeneity in hydrological conditions [81–83]; thus, to avoid mistaking GHG emissions from the TGR, different research teams should strengthen the cooperation to reveal the patterns of GHG emissions from the TGR correctly.

GHG emissions from the TGR have been studied for over 5 years since the CH₄ emissions from the TGR drawdown areas aroused attention at home and abroad in 2009 [64,84]. Much progress has been achieved on CH₄ emissions from the open water areas and the drawdown areas in the TGR by far [16,34,64,65]. However, there are 3 main defects on the present research. Firstly, no study is conducted on the degassing fluxes at the turbines and spillways of the TGD, especially substantial amounts of CH₄ emission when the hypolimnion passes through the turbines and spillways. Secondly, the dissolved gases in the water could reflect the potential abilities of gases storage and emission from a reservoir, but there is no study on the dissolved concentrations of CO₂, CH₄, and N₂O in

Table 3 N_2O emission from the temperate and tropical reservoirs.

Location	Reservoir name	Area (km²)	Age (a)	Diffusive flux ($\mu g m^{-2} d^{-1}$)	References
Finland	Lokka	2280	27	-299 to 462	[43]
			28	-14 to 507	[43]
	Porttipahta	2573	25	-260 to 173	[43]
Switzerland	Lake Wohlen	3.65	90	72	[44]
	Lake Lungern	2.01	86	50	[44]
China	Drawdown area in Pengxi River	1084	5	744 (-72 to 7536)	[75]
West Canada	15 reservoirs in British-Columbia		21-91	50	[38]
Middle Canada	6 reservoirs in Manitoba/Ontario		50-74	70	[38]
East Canada	26 reservoirs in Ontario/Québec		3-75	100	[38]
	ELARP in Ontario	0.19	1-2	−1.0 to −3.5	[77]
French Guiana	Petit Saut	300		4268	[79]
Panama	Fortuna	10	21	308	[79]
Brazil	Tucurui	2430	8-9	5500	[79]
	Samuel	559	4–5	6908	[79]
	Serra de Mesa	1784		132	[79]
	Manso			132	[79]

the water of the TGR because of the limitation in technique. Thirdly, there are many tributaries distributed in the TGR region, and every tributary has different conditions in hydrology and water quality, but the studies on GHG emissions from tributaries are limited in Xiangxi River, Pengxi River, Longxi River, and Daning River [13,45,83]. Due to these defects, it is difficult to estimate the total GHG emissions from the TGR accurately based on the present data available.

Besides the TGR, China has many other large dams with height higher than 15 m. According to the International Commission on Large Dams, there are 22,000 large dams in China, which account for 46% of the reported dams in the world [85]. However, the studies on GHG emissions are limited in Chinese reservoirs [86]. To evaluate the GHG emissions from the Chinese reservoirs, we could firstly choose the representative reservoirs in the 13 largest hydroelectricity bases in China, measure the 4 main pathways for GHGs to estimate the total GHG emissions from these reservoirs, and estimate the total GHG emissions from Chinese reservoirs based on these results. In the future international negotiations, the results would provide new evidences about whether the development of hydroelectricity could reduce the carbon emission in China.

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 41303065, 50809067), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2011BAJ07B05), and the Project of Zhejiang Scientific and Technological Plan (Nos. 2011F20025, 2011C22015).

References

- [1] Intergovernmental Panel on Climate Change (IPCC), Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2007, p. 996.
- [2] J. Gile, Methane quashes green credentials of hydropower, Nature 444 (7119) (2006) 524–525.
- [3] M. Demarty, J. Bastien, GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: review of 20 years of CH₄ emission measurements, Energy Policy 39 (7) (2011) 4197–4206.
- [4] H. Chen, X.Z. Yuan, Z.L. Chen, Y.Y. Wu, X.S. Liu, D. Zhu, N. Wu, Q.A. Zhu, C.H. Peng, W.Z. Li, Methane emissions from the surface of the Three Gorges Reservoir, J. Geophys. Res. 116 (2011) D21306.
- [5] D. Bastviken, L.J. Tranvik, J.A. Downing, P.M. Crill, A. Enrich-Prast, Freshwater methane emissions offset the continental carbon sink, Science 331 (6013) (2011) 50.

- [6] N. Barros, J.J. Cole, L.J. Tranvik, Y.T. Prairie, D. Bastviken, V.L.M. Huszar, P. del Giorgio, F. Roland, Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude, Nat. Geosci. 4 (9) (2011) 593–596.
- [7] P.M. Fearnside, Do hydroelectric dams mitigate global warming? the case of Brazil's Curná-Una dam, Mitig. Adapt. Strat. Glob. Change 10 (4) (2005) 675-691
- [8] M. Demarty, J. Bastien, A. Tremblay, R.H. Hesslein, R. Gill, Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec, Canada, measured with automated systems, Environ. Sci. Technol. 43 (23) (2009) 8908–8915.
- [9] T. Delsontro, D.F. Mcginnis, S. Sobek, I. Ostrovsky, B. Wehrli, Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments, Environ. Sci. Technol. 44 (7) (2010) 2419–2425.
- [10] F. Guérin, G. Abril, D. Serça, C. Delon, S. Richard, R. Delmas, A. Tremblay, L. Varfalvy, Gas transfer velocities of CO₂ and CH₄ in a tropical reservoir and its river downstream, J. Mar. Syst. 66 (1–4) (2007) 161–172.
- [11] N. Soumis, É. Duchemin, R. Canuel, M. Lucotte, Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochem. Cycles 18 (2004) GB3022.
- [12] Y.C. Lü, C.Q. Liu, S.L. Wang, G. Xu, F. Liu, Seasonal variability of $p(CO_2)$ in the two Karst Reservoirs, Hongfeng and Baihua lakes in Guizhou province, China Environ. Sci. 28 (12) (2007) 2674–2681.
- [13] Y. Zhao, Y. Zeng, B.F. Wu, Q. Wang, C. Yuan, Z.R. Xu, Observation on greenhouse gas emissions from Xiangxi river in Three Gorges region, Adv. Water Sci. 22 (4) (2011) 546–553.
- [14] R.D. Tadonléké, D. Planas, S. Paquet, Bacterial Activity in the water column and its impact on CO₂ efflux, in: A. Tremblay, L. Varfalvy, C. Roehm, M. Garneau (Eds.), Greenhouse Gas Emission–Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments, Springer, New York, 2005, pp. 467–482.
- [15] H. Zheng, X.J. Zhao, T.Q. Zhao, F.L. Chen, W.H. Xu, X.N. Duan, X.K. Wang, Z.Y. Ouyang, Spatial-temporal variations of methane emissions from the Ertan hydroelectric reservoir in southwest China, Hydrol. Process. 25 (9) (2011) 1391–1396.
- [16] L. Yang, F. Lu, X.K. Wang, X.N. Duan, W.Z. Song, B.F. Sun, S. Chen, Q. Zhang, P. Hou, F.X. Zheng, Y. Zhang, X.P. Zhou, Y.J. Zhou, Z.Y. Ouyang, Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir, J. Geophys. Res. 117 (2012) D10109.
- [17] C. Galy-Lacaux, R. Delmas, C. Jambert, J.F. Dumestre, L. Labroue, S. Richard, P. Gosse, Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochem. Cycles 11 (4) (1997) 471–402.
- [18] P.M. Fearnside, Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly 'clean' energy source an editorial comment, Climatic Change 66 (1-2) (2004) 1–8.
- [19] F. Guérin, G. Abril, S. Richard, B. Burban, C. Reynouard, P. Seyler, R. Delmas, Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers, Geophys. Res. Lett. 33 (2006) L21407.
- [20] B.H. Chen, Q.J. Hao, C.S. Jiang, Research progress on the emission of greenhouse gases from reservoir and its influence factors, Wetland Sci. 10 (1) (2012) 121– 128
- [21] P.M. Fearnside, Greenhouse Gas Emissions from Hydroelectric Dams in Tropical Forests, The Wiley Encyclopedia of Energy, John Wiley and Sons Publishers, New York, 2012. 1–19.
- [22] X.J. Zhao, T.Q. Zhao, H. Zheng, X.N. Duan, F.L. Chen, Z.Y. Ouyang, X.K. Wang, Greenhouse gas emission from reservoir and its influence factors, Environ. Sci. 29 (8) (2008) 2377–2384.
- [23] G. Abril, F. Guérin, S. Richard, R. Delmas, C. Galy-Lacaux, P. Gosse, A. Tremblay, L. Varfalvy, M.A. Dos Santos, B. Matvienko, Carbon dioxide methane emissions the carbon budget of a 10-year old tropical reservoir (Petit Saut French Guiana), Global Biogeochem. Cycles 19 (2005) GB4007, http://dx.doi.org/ 10.1029/2005.GB.002457.

- [24] P.M. Fearnside, Brazil's Samuel dam: lessons for hydroelectric development policy and the environment in Amazonia, Environ. Manage. 35 (1) (2005) 1-
- [25] L.P. Rosa, M.A. Dos Santos, B. Matvienko, E. Sikar, R.S.M. Lourenço, C.F. Menezes, Biogenic gas production from major Amazon reservoirs, Brazil. Hydrol. Process. 17 (7) (2003) 1443–1450.
- [26] A. Kemenes, B.R. Forsberg, J.M. Melack, CO₂ emissions from a tropical hydroelectric reservoir (Balbina, Brazil), J. Geophys. Res. 116 (2011) G03004, http://dx.doi.org/10.1029/2010JG001465.
- [27] M. Keller, R.F. Stallard, Methane emission by bubbling from Gatun lake panama, J. Geophys. Res. 99 (D4) (1994) 8307–8319.
- [28] M.A.D. Dos Santos, L.P. Rosa, B. Sikar, E. Sikar, E.O. Dos Santos, Gross greenhouse gas fluxes from hydro-power reservoir compared to thermopower plants, Energy Policy 34 (4) (2006) 481–488.
- [29] L.A.W. Bambace, F.M. Ramos, I.B.T. Lima, R.R. Rosa, Mitigation and recovery of methane emissions from tropical hydroelectric dams, Energy 32 (6) (2007) 1038–1046.
- [30] A. Kemenes, B.R. Forsberg, J.M. Melack, Methane release below a tropical hydroelectric dam, Geophys. Res. Lett. 34 (2007) L12809, http://dx.doi.org/ 10.1029/2007GL029469.
- [31] V. Chanudet, S. Descloux, A. Harby, H. Sundt, B.H. Hansen, O. Brakstad, D. Serça, F. Guérin, Gross CO₂ and CH₄ emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR, Sci. Total Environ. 409 (24) (2011) 5382–5391
- [32] D. Serça, C. Deshmukh, F. Becerra, V. Chanudet, S. Descloux, P. Guédant, F. Guérin, Methodology to assess of methane emission from a tropical hydro reservoir: case of Nam Theum 2, Laos. Geophys. Res. Abstr. 13 (2011) 6175.
- [33] C. Roehm, A. Tremblay, Role of turbines in the carbon dioxide emissions from two boreal reservoirs, Québec, Canada, J. Geophys. Res. 111 (2006) D24101.
- [34] L. Yang, Studies on Methane and Carbon Dioxide Emissions from the Three Gorges Reservoir and Their Influencing Factors [D], Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 2012.
- [35] V. St Louis, C.A. Kelly, É. Duchemin, J.W.M. Rudd, D.M. Rosenberg, Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate, Bioscience 50 (9) (2000) 766–775.
- [36] C.R. Teodoru, Y.T. Prairie, P.A. Giorgio, Spatial heterogeneity of surface CO₂ fluxes in a newly created Eastmain-1 reservoir in northern Quebec, Canada, Ecosystem 14 (1) (2011) 28–46.
- [37] É. Duchemin, M. Lucotte, R. Canuel, A. Chamberland, Production of the greenhouse gases CH₄ and CO₂ by hydroelectric reservoirs of the boreal region, Global Biogeochem. Cycles 9 (4) (1995) 529–540.
- [38] A. Tremblay, J. Therrien, B. Hamlin, E. Wichmann, L. LeDrew, GHG emissions from boreal reservoirs and natural aquatic ecosystems, in: A. Tremblay, L. Varfalvy, C. Roehm, M. Garneau (Eds.), Greenhouse Gas Emission–Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments, Springer, New York, 2005, pp. 209–232.
- [39] J. Therrien, A. Tremblay, R.B. Jacques, CO₂ emission from semi-arid reservoirs and natural aquatic ecosystems, in: A. Tremblay, L. Varfalvy, C. Roehm, M. Garneau (Eds.), Greenhouse Gas Emission–Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments, Springer, New York, 2005, pp. 234–250.
- [40] M.A. Amsebury, Monitoring greenhouse gas emission from hydroelectric reservoirs in northern Quebec, Canada. Application Note, 2008–09-03 [2012-12-29]. www.ppsystems.com.
- [41] A. Tremblay, M. Lambert, L. Gagnon, Do hydroelectric reservoirs emit greenhouse gases?, Environ. Manage. 33 (S1) (2004) S509–S517.
- [42] R. Gruca-rokosz, J.A. Tomaszek, P. Koszelnik, E. Czerwieniec, Methane and carbon dioxide emission from some reservoirs in SE Poland, Limnol. Rev. 10 (1) (2010) 15–21.
- [43] J.T. Huttunen, T.S. Väisänen, S.K. Hellsten, M. Heikkinen, H. Nykänen, H. Jungner, A. Niskanen, M.O. Virtanen, O.V. Lindqvist, O.S. Nenonen, P.J. Martikainen, Fluxes of CH₄, CO₂ and N₂O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochem. Cycles 16 (1) (2002) 1–3.
- [44] T. Diem, S. Koch, S. Schwarzenbach, B. Wehrli, C.J. Schubert, Greenhouse gas emissions (CO₂, CH₄, and N₂O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines, Aquat. Sci. 74 (3) (2012) 619–635.
- [45] T. Jiang, J.S. Guo, Z. Li, F. Fang, L. Bai, J. Liu, Air-water surface greenhouse gas flux in Pengxi river at different operational stages of the Three Gorges reservoir, Environ. Sci. 33 (5) (2012) 1463–1470.
- [46] D.Z. Zhao, D.B. Tan, Z.H. Wang, C.Y. Hao, Measurement and analysis of greenhouse gas fluxes from Shuibuya reservoir in Qingjiang river basin, J. Yangtze River Sci. Res. Inst. 28 (10) (2011) 197–204.
- [47] F.S. Wang, B.L. Wang, C.Q. Liu, Y.C. Wang, J. Guan, X.L. Liu, Y.X. Yu, Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China, Atmos. Environ. 45 (23) (2011) 3827–3834.
- [48] X. Peng, B.L. Wang, C.Q. Liu, F. Wang, Diurnal variations of p CO₂ in relation to environmental factors in the cascade reservoirs along the Wujiang River China, Chine. J. Geochem. 31 (1) (2012) 41–47.
- [49] R. Wanninkhof, Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res. 97 (C5) (1992) 7373–7382.
- [50] É. Duchemin, M. Lucotte, R. Canuel, Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies, Environ. Sci. Technol. 33 (2) (1999) 350–357.
- [51] C.J.D. Matthews, V.L. St Louis, R.H. Hesslein, Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces, Environ. Sci. Technol. 37 (4) (2003) 772–780.

- [52] E. Topp, E. Pattey, Soils as sources and sinks for atmospheric methane, Can. J. Soil Sci. 77 (2) (1997) 167–178.
- [53] N. Thérien, K. Morrison, Production of GHG from the decomposition of in vitro inundated Phytomass and soil, in: A. Trembaly, L. Valfalvy, C. Roehm, M. Garneau (Eds.), Greenhouse Gas Emissions-Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments, Springer, New York, 2005, pp. 315–338.
- [54] A. Dübendorf, Reservoirs: a neglected source of methane emissions. Science News, 2010-10-14 [2012-10-29]. http://www.sciencedaily.com/releases/ 2010/10/101011090139.htm.
- [55] S. Sobek, T. Delsontro, N. Wongfun, B. Wehrli, Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir, Geophys. Res. Lett. 39 (2012) L01401.
- [56] C. Galy-Lacaux, R. Delmas, G. Kouadio, S. Richard, P. Gosse, Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions, Global Biogeochem. Cycles 13 (2) (1999) 503–517.
- [57] P.M. Fearnside, Greenhouse gas emissions from hydroelectric dams: reply to Rosa et al., Climatic Change 75 (1–2) (2006) 103–109.
- [58] P. Dunfield, R. Knowles, R. Dumont, T. Moore, Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH, Soil Biol. Biochem. 25 (3) (1993) 321–326.
- [59] Y.P. Xing, P. Xie, H. Yang, L.Y. Ni, Y.S. Wang, K.W. Rong, Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China, Atmos. Environ. 39 (30) (2005) 5532–5540.
- [60] S. Juutinen, J. Alm, P. Martikainen, J. Silvola, Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes, Freshw. Biol. 46 (7) (2001) 855–869.
- [61] P. Kankaala, A. Ojala, T. Käki, Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake, Biogeochemistry 68 (3) (2004) 297–311.
- [62] H.Y. Jia, A.L. Lei, M. Ye, J.S. Lei, J.Z. Zhao, Assessment of phosphorus release from typical soil types in the zone of fluctuating water level in the Three Gorges reservoir region, Adv. Water Sci. 18 (3) (2007) 433–438.
- [63] P.M. Fearnside, A framework for estimating greenhouse gas emissions from Brazil's Amazonian hydroelectric dams, Oecol. Brasiliensis 12 (1) (2008) 100– 115.
- [64] H. Chen, Y.Y. Wu, X.Z. Yuan, Y.H. Gao, N. Wu, D. Zhu, Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir, J. Geophys. Res. 114 (2009) D18301.
- [65] F. Lu, L. Yang, X.K. Wang, X.N. Duan, Y.J. Mu, W.Z. Song, F.X. Zheng, J.F. Niu, L. Tong, H. Zheng, Y.J. Zhou, Z.Y. Ouyang, Preliminary report on methane emissions from the Three Gorges Reservoir in the summer drainage period, J. Environ. Sci. 23 (12) (2011) 2029–2033.
- [66] D.B. Kosolapov, Methane formation and consumption processes in the littoral zone of the Rybinsk Reservoir, Water Resour. 29 (2) (2002) 174–180.
- [67] J.T. Huttunen, T.S. Väisänen, S.K. Hellsten, P.J. Martikainen, Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs, Boreal Environ. Res. 11 (2006) 27–34.
- [68] J.J. Cole, N.F. Caraco, Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF₆, Limnol. Oceanogr. 43 (4) (1998) 647–656.
- [69] S. Ferrón, T. Ortega, A. Gómez-Parra, J.M. Forja, Seasonal study of dissolved CH₄, CO₂ and N₂O in a shallow tidal system of the bay of Cádiz (SW Spain), J. Mar. Syst. 66 (1-4) (2007) 244-257.
- [70] A. Borges, J. Vanderborght, L. Schiettecatte, F. Gazeau, S. Ferrón, B. Delille, M. Frankingnoulle, Variability of the gas transfer velocity of CO₂ in a macrotidal estuary (the Sceldt), Estuaries 27 (4) (2004) 593–603.
- [71] P.S. Liss, P.W. Balls, F.N. Martinelli, M. Coantic, The effect of evaporation and condensation on gas transfer across an air-water interface, Oceanol. Acta 4 (1981) 129–138.
- [72] B. Ward, R. Wanninkhof, W.R. McGillis, A.T. Jessup, M.D. DeGrandpre, J.E. Hare, J.B. Edson, Biases in the air-sea flux of CO₂ resulting from ocean surface temperature gradients, J. Geophys. Res. 109 (2004) C08S08.
- [73] J.A. Goldenfun, GHG Measurement Guidelines for Freshwater Reservoirs, IHA, UK, 2010. 36–91.
- [74] L.P. Rosa, M.A. Dos Santos, B. Matvienko, E.O. Dos Santos, E. Sikar, Greenhouse gas emissions from hydroelectric reservoirs in tropical regions, Climatic Change 66 (1–2) (2004) 9–21.
- [75] H. Chen, X.Z. Yuan, Y.H. Gao, N. Wu, D. Zhu, J.X. Wang, Nitrous oxide emissions from newly created littoral marshes in the drawdown area of the Three Gorges Reservoir, China, Water Air Soil Pollut, 211 (1–4) (2009) 25–33.
- [76] J.J. Beaulieu, J.L. Tank, S.K. Hamilton, W.M. Wollheim, R.O. Hall Jr, P.J. Mulholland, B.J. Peterson, L.R. Ashkenas, L.W. Cooper, C.N. Dahm, W.K. Dodds, N.B. Grimm, S.L. Johnson, W.H. McDowell, G.C. Poole, H.M. Valett, C.P. Arango, M.J. Bernot, A.J. Burgin, C.L. Crenshaw, A.M. Helton, L.T. Johnson, J.M. O'Brien, J.D. Potter, R.W. Sheibley, D.J. Sobota, S.M. Thomas, Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci. 108 (1) (2011) 214–219.
- [77] L.L. Hendzel, C.J.D. Matthews, J.J. Venkiteswaran, V.L. St Louis, D. Burton, E.M. Joyce, R.A. Bodaly, Nitrous oxide fluxes in three experimental boreal forest reservoirs, Environ. Sci. Technol. 39 (12) (2005) 4353–4360.
- [78] M. Mengis, R. Gächter, B. Wehrli, Sources and sinks of nitrous oxide (N₂O) in deep lakes, Biogeochemistry 38 (3) (1997) 281–301.
- [79] F. Guérin, G. Abril, A. Tremblay, R. Delmas, Nitrous oxide emissions from tropical hydroelectric reservoirs, Geophys. Res. Lett. 35 (2008) L06404, http:// dx.doi.org/10.1029/2007GL033057.

- [80] J.Z. Pang, X.K. Wang, Y.J. Mu, Z.Y. Ouyang, W.Z. Liu, Nitrous oxide emissions from an apple orchard soil in the semiarid Loess Plateau of China, Biol. Fert. Soils 46 (1) (2009) 37–44.
- [81] L. Yang, F. Lu, X. Wang, X. Duan, W. Song, B. Sun, Q. Zhang, Y. Zhou, Spatial and seasonal variability of diffusive methane emissions from the Three Gorges Reservoir, J. Geophys. Res. 118 (2013) 1–11.
- [82] L. Yang, F. Lu, X. Wang, X. Duan, L. Tong, Z. Ouyang, H. Li, Spatial and seasonal variability of CO₂ flux at the air-water interface of the Three Gorges Reservoir, J. Environ. Sci. 25 (11) (2013) 2229–2238.
 [83] Y. Zhao, B. Wu, Y. Zeng, Spatial and temporal patterns of greenhouse gas
- [83] Y. Zhao, B. Wu, Y. Zeng, Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China, Biogeosciences 10 (2) (2013) 1219–1230.
- [84] J. Qiu, Chinese dam may be a methane menace: wetlands around Three Gorges produce tonnes of the greenhouse gas, Nature (2009), http://dx.doi.org/ 10.1038/news.2009.962.
- [85] A. Tremblay, M. Lambert, C. Demers, Introduction Greenhouse Gas Emission-Fluxes and Processes, in: A. Tremblay, L. Varfalvy, C. Roehm, M. Garneau (Eds.), Hydroelectric Reservoirs and Natural Environments, Springer, New York, 2005, pp. 21–34.
- [86] R. Mendonca, N. Barros, L.O. Vidal, F. Pacheco, S. Kosten, F. Roland, Greenhouse gas emissions from hydroelectric reservoirs: what knowledge do we have and what is lacking?, in: Liu G X (Ed.), Greenhouse Gases-Emission Measurement and Management Rijeka, InTech, 2012, pp. 55–77.